Type + realization link | h-Characteristic | Realization of h | sl(2)-module decomposition of the ambient Lie algebra \(\psi=\) the fundamental \(sl(2)\)-weight. | Centralizer dimension | Type of semisimple part of centralizer, if known | The square of the length of the weight dual to h. | Dynkin index | Minimal containing regular semisimple SAs | Containing regular semisimple SAs in which the sl(2) has no centralizer |
\(A^{156}_1\) | (2, 2, 2, 2) | (22, 42, 60, 32) | \(V_{22\psi}+V_{14\psi}+V_{10\psi}+V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 312 | 156 | F^{1}_4; | F^{1}_4; |
\(A^{60}_1\) | (2, 2, 0, 2) | (14, 26, 36, 20) | \(V_{14\psi}+2V_{10\psi}+V_{6\psi}+V_{4\psi}+V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 120 | 60 | F^{1}_4; B^{1}_4; | F^{1}_4; B^{1}_4; |
\(A^{36}_1\) | (0, 2, 0, 2) | (10, 20, 28, 16) | \(2V_{10\psi}+V_{8\psi}+V_{6\psi}+V_{4\psi}+3V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 72 | 36 | F^{1}_4; C^{1}_3+A^{1}_1; | F^{1}_4; C^{1}_3+A^{1}_1; |
\(A^{35}_1\) | (1, 0, 1, 2) | (10, 19, 28, 16) | \(V_{10\psi}+2V_{9\psi}+V_{6\psi}+2V_{3\psi}+V_{2\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 70 | 35 | C^{1}_3; | C^{1}_3; |
\(A^{28}_1\) | (2, 2, 0, 0) | (10, 18, 24, 12) | \(V_{10\psi}+5V_{6\psi}+V_{2\psi}+3V_{0}\)
| 3 | not computed | 56 | 28 | D^{1}_4; B^{1}_3; | D^{1}_4; B^{1}_3; |
\(A^{12}_1\) | (0, 2, 0, 0) | (6, 12, 16, 8) | \(2V_{6\psi}+4V_{4\psi}+6V_{2\psi}\)
| 0 | \(\displaystyle 0\) | 24 | 12 | F^{1}_4; B^{1}_4; D^{1}_4; C^{1}_3+A^{1}_1; A^{1}_3+A^{2}_1; A^{2}_2+A^{1}_2; B^{1}_2+2A^{1}_1; | F^{1}_4; B^{1}_4; D^{1}_4; C^{1}_3+A^{1}_1; A^{1}_3+A^{2}_1; A^{2}_2+A^{1}_2; B^{1}_2+2A^{1}_1; |
\(A^{11}_1\) | (1, 0, 1, 0) | (6, 11, 16, 8) | \(V_{6\psi}+2V_{5\psi}+V_{4\psi}+4V_{3\psi}+3V_{2\psi}+3V_{0}\)
| 3 | \(\displaystyle A^{1}_1\) | 22 | 11 | C^{1}_3; B^{1}_2+A^{1}_1; | C^{1}_3; B^{1}_2+A^{1}_1; |
\(A^{10}_1\) | (2, 0, 0, 1) | (6, 10, 14, 8) | \(V_{6\psi}+4V_{4\psi}+4V_{3\psi}+V_{2\psi}+6V_{0}\)
| 6 | \(\displaystyle 2A^{1}_1\) | 20 | 10 | A^{1}_3; B^{1}_2; | A^{1}_3; B^{1}_2; |
\(A^{9}_1\) | (0, 1, 0, 1) | (5, 10, 14, 8) | \(2V_{5\psi}+3V_{4\psi}+2V_{3\psi}+2V_{2\psi}+4V_{\psi}+3V_{0}\)
| 3 | not computed | 18 | 9 | A^{2}_2+A^{1}_1; | A^{2}_2+A^{1}_1; |
\(A^{8}_1\) | (0, 0, 0, 2) | (4, 8, 12, 8) | \(7V_{4\psi}+V_{2\psi}+14V_{0}\)
| 14 | not computed | 16 | 8 | A^{2}_2; | A^{2}_2; |
\(A^{6}_1\) | (0, 0, 1, 0) | (4, 8, 12, 6) | \(3V_{4\psi}+2V_{3\psi}+6V_{2\psi}+4V_{\psi}+3V_{0}\)
| 3 | not computed | 12 | 6 | A^{1}_2+A^{2}_1; | A^{1}_2+A^{2}_1; |
\(A^{4}_1\) | (2, 0, 0, 0) | (4, 6, 8, 4) | \(V_{4\psi}+13V_{2\psi}+8V_{0}\)
| 8 | \(\displaystyle A^{2}_2\) | 8 | 4 | 4A^{1}_1; A^{2}_1+2A^{1}_1; A^{1}_2; | 4A^{1}_1; A^{2}_1+2A^{1}_1; A^{1}_2; |
\(A^{3}_1\) | (0, 1, 0, 0) | (3, 6, 8, 4) | \(2V_{3\psi}+6V_{2\psi}+10V_{\psi}+6V_{0}\)
| 6 | not computed | 6 | 3 | 3A^{1}_1; A^{2}_1+A^{1}_1; | 3A^{1}_1; A^{2}_1+A^{1}_1; |
\(A^{2}_1\) | (0, 0, 0, 1) | (2, 4, 6, 4) | \(7V_{2\psi}+8V_{\psi}+15V_{0}\)
| 15 | \(\displaystyle A^{1}_3\) | 4 | 2 | 2A^{1}_1; A^{2}_1; | 2A^{1}_1; A^{2}_1; |
\(A^{1}_1\) | (1, 0, 0, 0) | (2, 3, 4, 2) | \(V_{2\psi}+14V_{\psi}+21V_{0}\)
| 21 | \(\displaystyle C^{1}_3\) | 2 | 1 | A^{1}_1; | A^{1}_1; |